题目链接:
本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。
输入格式:
输入在第一行给出两个正整数N(2 <= N <=500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:
V1 V2 one-way length time
其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。
输出格式:
首先按下列格式输出最快到达的时间T和用节点编号表示的路线:
Time = T: 起点 => 节点1 => ... => 终点
然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:
Distance = D: 起点 => 节点1 => ... => 终点
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。
如果这两条路线是完全一样的,则按下列格式输出:
Time = T; Distance = D: 起点 => 节点1 => ... => 终点
输入样例1:
10 150 1 0 1 18 0 0 1 14 8 1 1 15 4 0 2 35 9 1 1 40 6 0 1 17 3 1 1 28 3 1 1 22 5 0 2 22 1 1 1 11 5 0 1 31 4 0 1 19 7 1 1 33 1 0 2 56 3 1 2 15 3
输出样例1:
Time = 6: 5 => 4 => 8 => 3Distance = 3: 5 => 1 => 3
输入样例2:
7 90 4 1 1 11 6 1 3 12 6 1 1 12 5 1 2 23 0 0 1 13 1 1 3 13 2 1 2 14 5 0 2 26 5 1 2 13 5
输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5
思路:最短路,涉及多个标尺,所以用dijkstra + dfs. 没什么注意的地方。
AC代码:
#include#include #include using namespace std;const int MAX = 510;const int INF = 0x3f3f3f;struct node{ int v; int len; int time; node() {} node(int _v, int _len, int _time) : v(_v), len(_len), time(_time) {}};int n, m, st, ed;vector min_path;int prepre[MAX];vector G[MAX];vector pre[MAX];vector temppath, anspath;vector dispre[MAX];int g[MAX][MAX];int sum = INF, min_d = INF;int d[MAX];int t[MAX];void time_dfs(int v) { if(v == st) { min_path.push_back(v); return; } time_dfs(prepre[v]); min_path.push_back(v);}void len_dfs(int v) { if(v == st) { temppath.push_back(v); int tempans; tempans = temppath.size(); if(tempans < sum) { anspath = temppath; sum = tempans; } temppath.pop_back(); return; } temppath.push_back(v); for(int i = 0; i < dispre[v].size(); i++) { len_dfs(dispre[v][i]); } temppath.pop_back();}void time_dijsktra(int st) {//储存时间相同的路径 bool vis[MAX] = {false}; fill(t, t + MAX, INF); t[st] = 0; for(int i = 0; i < n; i++) { prepre[i] = i; } for(int i = 0; i < n; i++) { int u = -1, MIN = INF; for(int j = 0; j < n; j++) { if(vis[j] == false && t[j] < MIN) { u = j; MIN = t[j]; } } if(u == -1) return ; vis[u] = true; for(int j = 0; j < G[u].size(); j++) { int v = G[u][j].v; if(vis[v] == false) { if(t[u] + G[u][j].time < t[v]) { t[v] = t[u] + G[u][j].time; d[v] = d[u] + g[u][v];//因为这行代码 那个点一直过不去 prepre[v] = u; } else if(t[u] + G[u][j].time == t[v] && d[v] > d[u] + g[u][v]) { d[v] = d[u] + g[u][v]; prepre[v] = u; } } } }}void len_dijsktra(int st) { bool vis[MAX] = {false}; fill(d, d + MAX, INF); d[st] = 0; for(int i = 0; i < n; i++) { int u = -1, MIN = INF; for(int j = 0; j < n; j++) { if(vis[j] == false && d[j] < MIN) { u = j; MIN = d[j]; } } if(u == -1) return ; vis[u] = true; for(int j = 0; j < G[u].size(); j++) { int v = G[u][j].v; if(vis[v] == false) { if(d[u] + G[u][j].len < d[v]) { d[v] = d[u] + G[u][j].len; dispre[v].clear(); dispre[v].push_back(u); } else if(d[u] + G[u][j].len == d[v]) { dispre[v].push_back(u); } } } }}int main() { int u, v, flag, dis, hour; cin >> n >> m; while(m--) { scanf("%d%d%d%d%d", &u, &v, &flag, &dis, &hour); if(flag) { G[u].push_back(node(v, dis, hour)); g[u][v] = dis; } else { G[u].push_back(node(v, dis, hour)); G[v].push_back(node(u, dis, hour)); g[u][v] = g[v][u] = dis; } } cin >> st >> ed; time_dijsktra(st); time_dfs(ed); reverse(min_path.begin(), min_path.end());//因为两条结果路中的 储存顺序不一样。 len_dijsktra(st); len_dfs(ed); if(min_path != anspath) { printf("Time = %d: ", t[ed]); for(int i = min_path.size() - 1; i >= 0; i--) { if(i == 0) printf("%d\n", min_path[i]); else printf("%d => ", min_path[i]); } printf("Distance = %d: ", d[ed]); for(int i = anspath.size() - 1; i >= 0; i--) { if(i == 0) printf("%d", anspath[i]); else printf("%d => ", anspath[i]); } } else { printf("Time = %d; Distance = %d: ", t[ed], d[ed]); for(int i = min_path.size() - 1; i >= 0; i--) { if(i == 0) printf("%d", min_path[i]); else printf("%d => ", min_path[i]); } } return 0;}
当时卡了我两天的代码,问题所在
AC代码:
#include#include #include using namespace std;const int MAX = 510;const int INF = 0x3f3f3f;struct node{ int v; int len; int time; node() {} node(int _v, int _len, int _time) : v(_v), len(_len), time(_time) {}};int n, m, st, ed;vector path, min_path;vector G[MAX];vector pre[MAX];//储存第一标尺相同的路vector temppath, anspath;//临时路,结果路。vector dispre[MAX];//储存遍历第一标尺相同的路int g[MAX][MAX];//距离int sum = INF, min_d = INF;int d[MAX];int t[MAX];void dfs(int v) {//时间相同,最短路 if(v == st) { path.push_back(v); int tempd = 0; for(int i = path.size() - 1; i > 0; i--) { // 原来是正序相加的 改为逆序就对了 后来想到是因为题目中(单双向)不确定 坑点! tempd += g[path[i]][path[i-1]]; } if(tempd < min_d) { min_path = path; min_d = tempd; } path.pop_back(); return; } path.push_back(v); for(int i = 0; i < pre[v].size(); i++) { dfs(pre[v][i]); } path.pop_back();}void len_dfs(int v) {距离相同,路径节点最少的 if(v == st) { temppath.push_back(v); int tempans; tempans = temppath.size(); if(tempans < sum) { anspath = temppath; sum = tempans; } temppath.pop_back(); return; } temppath.push_back(v); for(int i = 0; i < dispre[v].size(); i++) { len_dfs(dispre[v][i]); } temppath.pop_back();}void time_dijsktra(int st) {//储存时间相同的路 bool vis[MAX] = {false}; fill(t, t + MAX, INF); t[st] = 0; for(int i = 0; i < n; i++) { int u = -1, MIN = INF; for(int j = 0; j < n; j++) { if(vis[j] == false && t[j] < MIN) { u = j; MIN = t[j]; } } if(u == -1) return ; vis[u] = true; for(int j = 0; j < G[u].size(); j++) { int v = G[u][j].v; if(vis[v] == false) { if(t[u] + G[u][j].time < t[v]) { t[v] = t[u] + G[u][j].time; pre[v].clear(); pre[v].push_back(u); } else if(t[u] + G[u][j].time == t[v]) { pre[v].push_back(u); } } } }}void len_dijsktra(int st) {//储存距离相同的路 bool vis[MAX] = {false}; fill(d, d + MAX, INF); d[st] = 0; for(int i = 0; i < n; i++) { int u = -1, MIN = INF; for(int j = 0; j < n; j++) { if(vis[j] == false && d[j] < MIN) { u = j; MIN = d[j]; } } if(u == -1) return ; vis[u] = true; for(int j = 0; j < G[u].size(); j++) { int v = G[u][j].v; if(vis[v] == false) { if(d[u] + G[u][j].len < d[v]) { d[v] = d[u] + G[u][j].len; dispre[v].clear(); dispre[v].push_back(u); } else if(d[u] + G[u][j].len == d[v]) { dispre[v].push_back(u); } } } }}int main() { int u, v, flag, dis, hour; cin >> n >> m; while(m--) { scanf("%d%d%d%d%d", &u, &v, &flag, &dis, &hour); if(flag) { G[u].push_back(node(v, dis, hour)); g[u][v] = dis; } else { G[u].push_back(node(v, dis, hour)); G[v].push_back(node(u, dis, hour)); g[u][v] = g[v][u] = dis; } } cin >> st >> ed; time_dijsktra(st); dfs(ed); len_dijsktra(st); len_dfs(ed); // for(int i = 0; i < path.size(); i++) { // printf("%d ", path[i]); // } // printf("\n"); // reverse(anspath.begin(), anspath.end()); // for(int i = 0; i < anspath.size(); i++) { // printf("%d ", anspath[i]); // } // printf("\n"); if(min_path != anspath) { printf("Time = %d: ", t[ed]); for(int i = min_path.size() - 1; i >= 0; i--) { if(i == 0) printf("%d\n", min_path[i]); else printf("%d => ", min_path[i]); } printf("Distance = %d: ", d[ed]); for(int i = anspath.size() - 1; i >= 0; i--) { if(i == 0) printf("%d", anspath[i]); else printf("%d => ", anspath[i]); } } else { printf("Time = %d; Distance = %d: ", t[ed], d[ed]); for(int i = min_path.size() - 1; i >= 0; i--) { if(i == 0) printf("%d", min_path[i]); else printf("%d => ", min_path[i]); } } return 0;}